

Performance of a High-Fidelity 4 kW-Class Engineering Model PPU and Integration with the HiVHAc System

AIAA-2016-5031

Luis R. Piñero, Hani Kamhawi NASA Glenn Research Center, Cleveland, Ohio

and

Vladislav Shilo Colorado Power Electronics, Fort Collins, Colorado

Outline

- Background
 - HiVHAc System
 - Thruster
 - XFS
 - PPU
- CPE/HiVHAc EM PPU
 - Discharge Modules
 - Ancillary Module
 - DCIU Module
 - Control GUI
- EM PPU Testing
 - Test Flow
 - Test Setup
 - Test Conditions
 - Test Results
- HiVHAc System Integration
 - Discharge Start-Ups
 - Throttling
- Future Plans
- Conclusions

Background: HiVHAc System

- NASA GRC is leading the technology development activities for the High Voltage Hall Accelerator (HiVHAc) propulsion system
- Substantial cost and performance benefits for certain types of Discovery-class science missions compared to SOA ion and Hall thruster systems
- The HiVHAc system consists of three elements:
 - Thruster
 - XFS
 - PPU

Background: HiVHAc Thruster

HiVHAc EDU-2 Thruster

- Latest version of the HiVHAc thruster is the engineering development unit (EDU-2) developed by GRC and Aerojet
 - 3.9 kW discharge power
 - 2,700 s specific impulse at discharge voltage of 650 V
 - 58% efficiency
 - In-situ self-regulating discharge channel replacement mechanism
- Kamhawi, H., et al., "Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit," AIAA-2012-3854, 48th AIAA Joint Propulsion Conference, Atlanta, Georgia, July 2012.

Background: Xenon Feed System

- Xenon flow control module (XFCM) was developed by VACCO Industries
- Joint effort between NASA and the Air Force Research Laboratory (AFRL) as a lightweight propellant flow control alternative for electric propulsion
- Inlet pressure range = 10 to 3,000 psia
- Flow range = 0 to 160 sccm
- Mass = 1.25 kg
- Dimensions = $19.5 \times 7.0 \times 7.5 \text{ cm}$
- Power < 1 W
- Flight qualification completed in 2012
- Dankanich, J., et al., "Advanced Xenon Feed System (AXFS) Development and Hot-fire Testing," 45th AIAA Joint Propulsion Conference, AIAA 2009-4910, Denver, Colorado, August 2009.

Background: CPE/HiVHAc PPU

- Developed by Colorado Power Electronics (CPE) in Fort Collins, Colorado, with funding from NASA'S Small Business Innovative Research (SBIR) Program
- Four design iterations have been completed
 - Breadboard discharge module
 - Brassboard #1 demonstrated power converters
 - Brassboard #2 refined the electrical and mechanical design and made it more flight-like
 - Engineering model improved manufacturability and included a digital control interface unit (DCIU), electronics for XFCM, and rad-hard MOSFETs on one of two discharge modules
- All units where integrated with HiVHAc thrusters at GRC
- Brassboard units were tested for thousands of hours in vacuum
- EM unit performance was thoroughly characterized in vacuum

Breadboard Discharge Module

Brassboard PPU #1

Brassboard PPU #2

EM PPU

CPE/HiVHAc EM PPU

EM PPU	Discharge	Magnets (2)	Keeper	Heater
Output Voltage	200 – 700 V	2 – 10 V	5 – 40 V	1 – 15 V
Output Current	1.4 – 15 A	1 – 5 A	1 – 4 A	3.5 – 10 A
Output Power Max	4 kW	50 W	80 W	150 W
Regulation Mode	Voltage or Current	Current	Current	Current
Output Ripple	≤ 5%			
Line/Load Regulation	≤ 2%			
Input Voltage	80 – 160 V (main) and 24 – 34V (housekeeping)			

- Modular design
 - Two discharge modules
 - One ancillary module
 - One DCIU module
- High voltage bus (HVB) input
- Low voltage bus (LVB) input
- MIL-STD-1553

- Thruster Power
 - Discharge
 - Inner Magnet
 - Outer Magnet
 - Keeper
 - Heater

XFCM

- Power
- Control
- Telemetry

Discharge Modules

- 3-phase LLC resonant converter
 - Wide range of operation
 - Very low filter requirements
- Two discharge modules operate in parallel
- Either module can operate as master and limit the current of the other module
- Output voltage and current regulation loops
- Discharge modules can deliver full power (4 kW) and any output voltage from 250 to 700 V and any input voltage
- Piñero, L., et at., "Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster," 31st International Electric Propulsion Conference, IEPC-2009-275, Ann Arbor, Michigan, September 2009

Ancillary Module

- Power supplies beside discharge needed for thruster
 - Inner magnet supply
 - Outer magnet supply
 - Keeper supply with pulse ignitor
 - Heater supply
- Single-phase resonant converters
- Similar power converter design
- Inner and outer magnet supplies are same design

DCIU Module

DCIU

- Implemented by a reprogrammable field programmable gate array (FPGA)
- Receives commands and transmits telemetry to control computer through a MIL-STD-1553B interface
- Processes telemetry from power supplies and XFCM
- Automatically controls the system
 - ✓ Cathode conditioning
 - ✓ Cathode ignition
 - ✓ Discharge start-up
 - ✓ Steady-state (discharge current close-loop control)
 - ✓ Throttle
 - ✓ Shutdown
- Control parameters are programmable
 - ✓ Thresholds
 - ✓ Limits
 - ✓ Ramp rates
 - ✓ Delays and durations
- Monitors operation and safes system in case of fault
- Includes manual-mode operation for diagnostics
- Auxiliary power supply
 - Uses power from a low voltage bus (LVB) input to generate auxiliary or housekeeping power for the power supplies, XFCM, and DCIU
- XFCM drive
 - Drivers for micro-latching and piezo-control valves
 - Power for temperature and pressure transducers

CPE/HiVHAc EM PPU

- Modular design
- Dimensions = $38.6 \times 23.2 \times 16.3 \text{ cm}$
- Mass = 15.6 kg

System Control GUI

GUI for Cathode Ignition Sequence in "Auto-Mode" Control

EM PPU Test Flow

- Functional and performance tests were conducted in air and vacuum
- Vacuum performance tests were conducted at baseplate operational limits of -20 and 50°C
- Integration with thruster and XFCM
- EMI characterization was conducted per MIL-STD-461C (CE01 and CE03)

EM PPU Test Setup

- VF-70
 - Dedicated for PPU testing
 - 0.6-m diameter by 1-m long
 - $< 1 \times 10^{-6}$ while operating PPU
 - Located next to VF-12
- VF-12
 - 3-m diameter by 10-m long
 - Cryo-pumped
 - $1x10^{-5}$ Torr while operating thruster

Operating Conditions

Discharge Voltage	Discharg e Current	Magnet Current	Keeper Current	Thruster Power	HVB Voltage	LVB Voltage
200 V	1.4 A	2.4 A	1.0 A	0.31 kW	80, 120, 160 V	24, 28, 34 V
300 V	1.7 A	2.9 A	1.0 A	0.55 kW	80, 120, 160 V	28 V
400 V	2.5 A	2.8 A	1.0 A	1.03 kW	80, 120, 160 V	28 V
500 V	3.0 A	3.7 A	1.0 A	1.55 kW	80, 120, 160 V	28 V
600 V	2.6 A	4.0 A	1.0 A	1.62 kW	80, 120, 160 V	28 V
650 V	2.3 A	4.0 A	1.0 A	1.55 kW	80, 120, 160 V	28 V
200 V	7.5 A	4.0 A	1.0 A	1.56 kW	80, 120, 160 V	28 V
300 V	6.9 A	3.5 A	1.0 A	2.12 kW	80, 120, 160 V	24, 28, 34 V
400 V	7.4 A	2.4 A	1.0 A	2.99 kW	80, 120, 160 V	28 V
500 V	7.7 A	3.5 A	1.0 A	3.90 kW	80, 120, 160 V	28 V
600 V	6.5 A	2.7 A	1.0 A	3.93 kW	80, 120, 160 V	28 V
650 V	5.9 A	2.7 A	1.0 A	3.89 kW	80, 120, 160 V	24, 28, 34 V

- Operating conditions of resistive load cover entire operating range of the HiVHAc thruster
- Power supplies were independently tested in some cases to cover the actual operating range of the power supply (i.e. 200 V / 15 A)
- PPU as operated at the baseplate operational limits of -20 to 50°C

CPE/HiVHAc EM PPU Performance

	Specification	Test Results		Test Conditions	
Telemetry Accuracy	\leq 2% of FS	Discharge ≤ 1.0%	Keeper ≤ 2.7%	Over throttling range	
		$Magnet \leq 1.5\%$	$Heater \leq 2.0\%$	Over throttning range	
Set point Accuracy	≤ 2% of FS	Discharge < 0.1%	$Keeper \leq 2.5\%$	Over throttling range	
		$Magnet \leq 0.8\%$	Heater $\leq 1.7\%$	Over throttling range	
Line	< 2.04	$Discharge \leq 0.01\%$	$Keeper \leq 3.2\%$	Over energing renge	
Regulation	≤ 2 %	Magnet $\leq 0.8\%$	Heater $\leq 0.7\%$	Over operating range	
Load Regulation	≤ 2 %	$Discharge \leq 0.05\%$	$Keeper \leq 0.8\%$	Over energing range	
		$Magnet \leq 0.8\%$	Heater $\leq 1.9\%$	Over operating range	
Efficiency	≥ 95 % at FP	Discharge: 86–96%	Keeper: 47–80%	Over an anatima assess	
		Magnet: 57-86%	Heater: 57–87%	Over operating range	
Output Ripple	≤ 5 %	Discharge ≤ 0.7%	Keeper ≤ 3.3 %	0	
	≥ <i>3</i> %	Magnet $\leq 0.8\%$	Heater ≤ 1.0%	Over operating range	
Transient Response	n/a	Discharge ≤ 8 ms	Keeper ≤ 4 ms	No. 10 ad 40 feell as	
		Magnet ≤ 10 ms	Heater ≤ 8 ms	No-load to full power	
Temperature Range	-20 to 50°C	-20 to 50°C			

- Electrical specifications were met with margin with exception of the keeper telemetry accuracy and regulation
- Improvements for these circuits have been developed and will be implemented in the next design iteration.

CPE/HiVHAc EM PPU Efficiency

- Efficiency at full power was 95%
- Efficiency was > 90% from 1 to 4 kW
- Variation over entire input voltage range was approximately 0.5%
- Variation over entire temperature range was approximately 0.5%

System Integration Test

- Integrate the PPU with the XFCM
 - Demonstrate control of latching valves
 - Demonstrate control of the piezo-control valve
 - Demonstrate telemetry was received
- Integrate the PPU, XFCM and thruster
 - Demonstrate cathode ignition
 - Demonstrate discharge start-ups
 - ✓ "Hard" mode
 - ✓ "Glow" mode
 - Demonstrate close-loop on discharge current
 - ✓ Steady-state
 - ✓ Throttling

Discharge Start-Up

"Hard" Mode

- \bullet T = 0s
 - Cathode ignited and operating off keeper supply
 - Anode PCV OPEN command
- 0 < T < 12s
 - Anode flow ramps up
- \bullet T = 12s
 - Discharge and magnet supplies ON command
- 12s < T < 22s
 - Discharge current ramps up
 - ~ 20% overshoot
- 22s < T < 60s
 - Close-loop adjusts flow to take discharge current to setpoint
- The overshoot discharge current shows the hysteretic behavior of the PCV
 - Can be minimized by optimizing the PID controller parameters
- Start up timing and magnitudes can be changed through sequence parameters

Discharge Start-Up

"Glow" Mode

- T = 0s
 - Cathode ignited and operating off keeper supply
 - Anode PCV OPEN command
- $0 < T \le 3s$
 - Anode flow ramps up
- T = 3s
 - Discharge and magnet supplies ON command
- $3s < T \le 7s$
 - Discharge current ramps up
 - Discharge supply operating in current-mode at current limit setpoint
- $7s < T \le 12s$
 - Close-loop ramps down flow rate to take discharge current to setpoint
 - ~20% undershoot
- $12s < T \le 50s$
 - Close-loop adjusts flow to take discharge current to setpoint
- The overshoot discharge current shows the hysteretic behavior of the PCV
 - Can be minimized by optimizing the PID controller parameters
- Start up timing and magnitudes can be changed through sequence parameters

Throttling

- $T = 0 \min$
 - Thruster operating at approximately 500 V / 2.0 A / 1.0 kW
- $0 < T \le 50 \text{ min}$
 - Discharge current increased approximately 1 A increments to 3.5 kW
- $50 \min < T \le 90 \min$
 - Small adjustments in current
- T = 90 min
 - Discharge current reduced to ~ 6.5 A
 - Discharge voltage increased to 600 V
 - Thruster operating at full power of 3.9 kW
- $90 \text{ min} < T \le 140 \text{ min}$
 - Thruster throttled down to 1.8 kW
- T = 140 min
 - Thruster off
- The overshoot and undershoots in discharge current at transitions can be minimized by optimizing the parameters of the PID controller
- Discharge oscillations were nominal during test
- PPU was also successfully integrated with a SPT-140 using the same test setup
 - Kamhawi, H., et al., "Integration Test of the 4 kW-Class HiVHAc PPU with the HiVHAc and the SPT-140 Hall Effect Thrusters," AIAA-2016-4943.

Future Plans

- Prototype Demonstration Unit (PDU) PPU
- Next iteration of PPU based on EM PPU electrical and mechanical design
- Output specifications were changed to enable operation of other commercial thrusters
 - Discharge power
 - Magnet voltage and current
 - Heater voltage and current
- Input voltage range was changed to satisfy power requirements of commercial spacecraft busses and NASA missions
- Additional functionality:
 - Magnet reversal
 - Independent discharge module control
 - XFCM inlet heater power to enable high flow rate
 - Health status flags
 - Safety interlocks and lockouts
 - Telemetry
 - ✓ Input
 - ✓ Discharge ripple
 - Correct minor issues identified during EM PPU testing

PDU PPU	Discharge	Magnets (2)	Keeper	Heater
Output Voltage	200 – 700 V	2 – 20 V	5 – 40 V	1 – 13 V
Output Current	1.4 – 15 A	1 – 7.5 A	1 – 2 A	3.5 – 21 A
Output Power Max	4.5 kW	108 W	80 W	210 W
Regulation Mode	Voltage or Current	Current	Current	Current
Output Ripple	≤ 5%			
Line/Load Regulation	≤ 2%			
Input Voltage	68 – 140 V (main) and 24 – 34V (housekeeping)			

- All parts will have flight equivalents or will have path to flight qualification
- Will be built using flight processes and procedures
- Analyses:
 - Stress
 - Thermal
 - Structural
 - Worst-case
 - Radiation assessment

Conclusions

- The CPE/HiVHAc EM PPU was successfully tested
- Most electrical requirements were met with margin
- Total efficiency as high as 95% at full power was measured
- Performance was measured at operating temperature extremes of -20 and 50°C
- Integrated with VACCO XFCM and HiVHAc thruster to demonstrate close-loop control on discharge current with anode flow
- Successfully demonstrated ignitions, start ups, and throttling
- A PDU PPU is under development will have additional functionality, will better capture NASA and commercial needs, and will get the design closer to flight-qualification.

Questions?